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Abstract. Based on the concept of joint quasiprobability of the eigenstates of non-commuting
components of a spin, a criterion is proposed to characterize the states of a system ofN spin-1

2s
as classical or non-classical. That criterion characterizes any state of a spin-1

2 and a factorizable
state ofN spin-1

2s as classical. It correctly identifies any pure entangled state of two spin-1
2s, an

entangled eigenstate of any component of exchange symmetric spin system and squeezed spin
states as non-classical.

The relationship between the quantum indeterminism and the classical statistical one has
been of fundamental interest since the advent of quantum mechanics. In the case of
a system of observables obeying the canonical commutation relations, that question is
addressed by introducing the concept of phase space quasiprobability distributions (QPDs).
That leads to the classification of the states as classical or non-classical. From amongst
various quasiprobability distributions, the one that has proved most valuable for the said
classification is theP -function: a state of a canonical system is labelled classical if its
P -function is a classical distribution function. According to that criterion, the canonical
coherent states are classical whereas all the other pure states of a canonical system are
non-classical.

The non-classicality of a state of a system of spin-1
2s is characterized by that of spin–

spin correlations [1–4]: a spin state is labelled non-classical if the spin–spin correlations
cannot be described in terms of a classical distribution function. According to that scheme
of classification, an uncorrelated state of spins, like a spin coherent state, as also all the
states of a single spin-1

2, should therefore be identified as classical. However, the phase
space distributions for spins [5–7], defined in analogy with those for a canonical system, do
not provide any criterion for the said classification. That is because the phase space Wigner
as well as theP -functions for spins turn out to be non-classical [5, 6]. For a system of two
or more spin-12s the identification of non-classical states has been based largely on testing
the Bell kind of inequalities or the GHZ equalities [1–3, 8]. Those tests, although they are of
immense practical value, however, provide sufficient but not necessary conditions for a spin
state to be non-classical. Here we introduce a criterion for classifying the states of a system
of N spin-1

2s as classical or non-classical on the basis of the nature of spin–spin correlations.
That criterion is based on characterizing any state of a spin-1

2 and an uncorrelated state of
N spin-1

2s as classical. The ground and the highest excited eigenstates of any component of
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the collective spin operator, i.e. the spin coherent states, being uncorrelated, are therefore
classical, whereas all its other eigenstates which are entangled turn out to be non-classical.
The classification of the states of a spin according to the criterion introduced here is,
therefore, similar to that for a canonical system.

Our approach is based on the concept of joint quasiprobability for the eigenstates of
two or more non-commuting spin components [8–13]. That quasiprobability is derived,
following [13], by constructing first a classical analogue of the quantum system of
N spin-1

2s described by the spin operatorsŜ(i), (i = 1, 2, . . . , N) whose components

(Ŝ(i)a , Ŝ
(i)

b ) ≡ (Ŝ(i) ·a, Ŝ(i) ·b) along arbitarary directionsa andb obey the anticommutation
relation

Ŝ(i)a Ŝ
(i)

b + Ŝ
(i)

b Ŝ
(i)
a = a · b

2
(1)

and the commutation relation

[Ŝ(i)a , Ŝ
(i)

b ] = i(a × b) · Ŝ(i). (2)

The operators for different spins, of course, commute. Quantum mechanically, the outcome
of any measurement on an observable is an eigenvalue of that observable. Since the
eigenvalues of any component of a spin-1

2 are ± 1
2, a measurement on a component of

spin-1
2 results in one of the two values± 1

2. The classical analogue of a system ofN spin-
1
2s is constructed accordingly by treating each of the operatorsŜ(i)a as a classical two-state
random variableS(i)a capable of assuming the values± 1

2. The moments of those variables
are determined in terms of the expectation values of the quantum operators. Those moments
are then used to construct the classical probability distribution.

In what follows we need to work with the joint probability of three components,
say, the componentsS(i)

µ(i)
≡ Si · µ(i) along the directionsµ(i) = a(i), b(i), c(i).

Let pcm(ε
(1)
a(1)
, ε

(1)
b(1)
, ε

(1)
c(1)

; ε(2)
a(2)
, ε

(2)
b(2)
, ε

(2)
c(2)

; . . . ε(m)
a(m)
, ε

(m)

b(m)
, ε

(m)

c(m)
), where ε

(i)

µ(i)
= ±1 denotes

the joint probability for those components of spins 1, 2, . . . , m to have the values
(ε
(1)
a(1)
/2, ε(1)

b(1)
/2, ε(1)

c(1)
/2; ε(2)

a(2)
/2, ε(2)

b(2)
/2, ε(2)

c(2)
/2; . . . ε(m)

a(m)
/2, ε(m)

b(m)
/2, ε(m)

c(m)
/2), respectively. The

probability distribution for three components each of them spins is then evidently given by

f cm({S(i)a(i)
, S

(i)

b(i)
, S

(i)

c(i)
}m) =

∑
{ε(j)

µ(j)
=±1}

pcm({ε(j)a(j)
, ε

(j)

b(j)
, epsilon

(j)

c(j)
}m)

×
m∏
i=1

δ

(
S
(i)

a(i)
− ε

(i)

a(i)

2

)
δ

(
S
(i)

b(i)
− ε

(i)

b(i)

2

)
δ

(
S
(i)

c(i)
− ε

(i)

c(i)

2

)
(3)

where ({x(i), y(i), z(i)}m) ≡ (x(1), y(1), z(1); x(2), y(2), z(2); . . . x(m), y(m), z(m)). The
expression for the joint probability derived in [13] in terms of the averages can be written
in the following useful form:

pcm({ε(i)a(i)
, ε

(i)

b(i)
, ε

(i)

c(i)
}m) =

〈 m∏
j=1

( 1
2 + ε

(j)

a(j)
S
(j)

a(j)
)( 1

2 + ε
(j)

b(j)
S
(j)

b(j)
)( 1

2 + ε
(j)

c(j)
S
(j)

c(j)
)

〉
(4)

where the angular bracket denotes the average with respect to the given distribution.
The expression (4) can alternatively be derived by multiplying the two sides of (3) by∏m
j=1(

1
2 +α(j)

a(j)
S
(j)

a(j)
)( 1

2 +α(j)
b(j)
S
(j)

b(j)
)( 1

2 +α(j)
c(j)
S
(j)

c(j)
), whereα(j)

µ(j)
= ±1, followed by integration

over the random variables to obtain〈 m∏
j=1

( 1
2 + α

(j)

a(j)
S
(j)

a(j)
)( 1

2 + α
(j)

b(j)
S
(j)

b(j)
)( 1

2 + α
(j)

c(j)
S
(j)

c(j)
)

〉
=

∑
{ε(i)

µ(i)
=±1}

pcm({ε(i)a(i)
, ε

(i)

b(i)
, ε

(i)

c(i)
}m)
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×
m∏
j=1

[{ 1
2(1 + ε

(j)

a(j)
α
(j)

a(j)
)}{ 1

2(1 + ε
(j)

b(j)
α
(j)

b(j)
)}{ 1

2(1 + ε
(j)

c(j)
α
(j)

c(j)
)}]. (5)

The expression (4) follows by noting that the right-hand side of (5) is non-zero only when
ε
(j)

a(j)
α
(j)

a(j)
= ε

(j)

b(j)
α
(j)

b(j)
= ε

(j)

c(j)
α
(j)

c(j)
= 1, i.e. whenε(j)

a(j)
= α

(j)

a(j)
, ε

(j)

b(j)
= α

(j)

b(j)
, ε

(j)

c(j)
= α

(j)

c(j)
for all

j .
The quantum analoguepqm of the classical joint probabilitypcm, i.e. the joint

quasiprobability (JQP), is constructed by reverting to the quantum description by replacing
the classical random variablesS(i)

µ(i)
by the spin operatorŝS(i)µ(i). That procedure, however,

encounters the well known conceptual problem of finding a quantum counterpart of the
products of those classical variables whose quantum analogues are represented by non-
commuting operators. The choice of different rules of association of the products of classical
variables with those of the quantum operators leads to different quasiprobabilities. We
choose the ‘Wigner-like’ symmetric ordering of the products whereby, also invoking (1),

S(i)a S
(i)

b → 1

2
(Ŝ(i)a Ŝ

(i)

b + Ŝ
(i)

b Ŝ
(i)
a ) = a · b

4
etc

S(i)a S
(i)

b S
(i)
c → 1

12[Ŝ(i)a (Ŝ
(i)

b Ŝ
(i)
c + Ŝ(i)c Ŝ

(i)

b )+ (Ŝ
(i)

b Ŝ
(i)
c + Ŝ(i)c Ŝ

(i)

b )Ŝ
(i)
a

+(a → b, b → c, c → a)+ (a → c, c → b, b → a)]

= 1
6[(b · c)Ŝ(i)a + (a · c)Ŝ(i)b + (a · b)Ŝ(i)c ]. (6)

The merit of the symmetric ordering will become clear in what follows. The JQP can be
constructed by replacing the classical variables in (4) by the corresponding operators using
the rule (6) and by interpreting the averages as the expectation values with respect to the
density matrix describing the given quantum state. The expression for the JQP simplifies
considerably for mutually orthogonal components. For ifa, b, c are mutually orthogonal
then the correspondence (6) leads to(

1
2 + Sa

)(
1
2 + Sb

)(
1
2 + Sc

) → 1

22

(
1
2 + Ŝa + Ŝb + Ŝc

)
. (7)

On using (7) in (4) the expression for the JQP for three mutually orthogonal components
of each of the spins reads

pqm({ε(i)ai
, ε

(i)

bi
, ε(i)ci

}m) =
〈 m∏
j=1

1

22

(
1

2
+ ε(j)aj

Ŝ(j)aj
+ ε

(j)

bj
Ŝ
(j)

bj
+ ε(j)cj

Ŝ(j)cj

) 〉
. (8)

In what follows we will need to deal with the JQP for three mutually orthogonal components
of each of the spins.

Before proceeding further let us point out the connection between the JQP and the phase
space distributions for the spins. To that end we show that the joint probability for finding
each spin in the eigenstate|( 1

2)i,a〉(|(− 1
2)i,a〉) of its component in the directiona is the

Q-function 〈a|ρ|a〉(〈−a|ρ| − a〉) whereρ is the density matrix of the system of spins and
| ± a〉 are the spin coherent states. Recall that the spin coherent state|a〉 (| − a〉) is the
product of single-spin eigenstates|( 1

2)i,a〉 (|(− 1
2)i,a〉):

| ± a〉 =
N∏
i=1

| ± ( 1
2)i,a〉 (9)

where

Ŝ(i)a | ± ( 1
2)i,a〉 = ± 1

2| ± ( 1
2)i,a〉. (10)
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Using (9) and the identity

| ± ( 1
2)i,a〉〈±( 1

2)i,a| = ( 1
2 ± Ŝ(i)a ) (11)

theQ-function 〈±a|ρ| ± a〉 can obviously be written as

〈±a|ρ| ± a〉 = Tr[ρ| ± a〉〈±a|]

=
〈 N∏
i=1

( 1
2 ± Ŝ(i)a )

〉
(12)

where the angular brackets denote expectation value with respect to the density matrixρ.
On the other hand, the classical expression for the joint probability for the component of
each of the spins in the directiona to have the value± 1

2 is given, invoking (4), by

pcN({±}N) =
〈 N∏
j=1

( 1
2 ± S(j)a )

〉
. (13)

The quantum analogue of the joint probability obtained by replacing the classical variables
in (13) by the operators reads

p
q

N({±}N) =
〈 N∏
j=1

( 1
2 ± Ŝ(j)a )

〉
(14)

which is the same as the expression (12) for theQ-function. The joint probability (14) is
always classical since it refers to the measurement of only commuting components.

The non-classical behaviour can be reflected in the joint probability involving more
than one component of each of the spins. In order to choose the components, the joint
probability distribution of whose eigenstates is to be used to classify the spin states as
classical or non-classical, it is essential to specify the property on which one wishes to base
that classification. As discussed above, the property of interest for a system of spins is the
spin–spin correlations [1–4]: a spin state is labelled classical or non-classical according to
whether the spin–spin correlations are classical or not. That implies that any criterion used
to classify the states of a system ofN spin-1

2s should identify any state of a single spin-1
2

and also an uncorrelated state of spins as classical. Now, any pure state of a spin-1
2 is an

eigenstate of some spin component. Consider then an eigenstate| ± a〉 of the component
Ŝ(i)a of the ith spin-12. For such a state

〈±a|Ŝ(i)a | ± a〉 = ± 1
2 〈±a|Ŝ(i)µ | ± a〉 = 0 whereµ · a = 0 (15)

i.e. the average direction of the spin in state|±a〉 is ±a. Also, the components of the spin
orthogonal to that direction and to each other are uncorrelated, i.e.

〈Ŝ(i)µ Ŝ
(i)
ν 〉 + 〈Ŝ(i)ν Ŝ

(i)
µ 〉 − 2〈Ŝ(i)µ 〉〈Ŝ(i)ν 〉 = 0 µ 6= ν = a, b, c (16)

where a, b and c are orthogonal to each other. Now, the analogous classical system is
constructed, as discussed before, by demanding that the averages of the classical random
variablesS(i)µ corresponding to the operatorŝS(i)µ be given by (15). As a result, the
corresponding classical correlation function

C
(ii)

(µ,ν) = 〈S(i)µ S
(i)
ν 〉 − 〈S(i)µ 〉〈S(i)ν 〉 µ 6= ν = a, b, c (17)

reduces to〈S(i)µ S
(i)
ν 〉. That function would vanish, like its quantum counterpart (16), if the

classical product is identified with the symmetric product of the operators as in (6). In other
orderings, for example the ones discussed in [11, 12], the correlation function (17) will be
non-zero for someµ andν. Thus the Wigner-like symmetric ordering presents itself as a



Criterion for classifying the states ofN spin-1
2s 5723

natural choice if the classical variables corresponding to the uncorrelated quantum operators
are also to be uncorrelated. For mutually orthogonal vectorsa, b, c the JQP is given by
(8). For a single spin-12 it reads

pq(ε(i)a , ε
(i)

b , ε
(i)
c ) = 1

23
(1 ± ε(i)a ). (18)

The JQP (18) is always positive semi-definite, i.e. classical. It can be verified that the JQP
for any other choice of spin components will not be classical.

Next we consider an uncorrelated system ofN spin-1
2s. The JQP for such a system

evidently factorizes. Consider the joint quasiprobabilitiespm({ε(i)a(i)
, ε

(i)

b(i)
, ε

(i)

c(i)
}m) (m =

1, 2, . . . , N) where (a(i), b(i), c(i)) are mutually orthogonal witha(i) in the average direction
of theith spin. By noting that the average of the product of uncorrelated spins is the product
of their averages, the expression (8) for the JQP reduces to

pq({ε(i)a , ε
(i)

b ε
(i)
c }N) =

N∏
j=1

1

23
(1 ± ε

(j)

a(j)
). (19)

Thus all the quasiprobabilities for the joint distribution of three orthogonal components of
each of the spins are positive semi-definite, i.e. classical if one of those components for
a spin is in the average direction of that spin. In particular, if the spins have exchange
symmetry then the average direction of all the spins is the same; say±a. The uncorrelated
state of such a system is the spin coherent state. From (19) it follows that if the system is
in the spin coherent state| 1

2,a〉 then

p
q

N({+, ε(i)b , ε
(i)
c }N) = 1

22N

= 0 otherwise (20)

whereas for the state| − 1
2,a〉, pqN({−, ε(i)b , ε

(i)
c }N) = 1/22N are the only non-zero JQPs.

The corresponding quasiprobability distribution, obtained by substituting (20) in the quantum
version of (3), reads

f
q

N({Sa, Sb, Sc}N) = 1

22N

∑
{ε(i)µ=±1}

N∏
i=1

δ

(
S(i)a ± 1

2

)
δ

(
S
(i)

b − ε
(i)

b(i)

2

)
δ

(
S(i)c − ε

(i)

c(i)

2

)

≡ 1

22N

N∏
i=1

[δ(S(i)a ± 1
2){δ(S(i)b − 1

2)+ δ(S
(i)

b + 1
2)}{δ(S(i)c − 1

2)+ δ(S(i)c + 1
2)}].

(21)

The quasiprobability distribution of the chosen non-commuting components factorizes which
implies that those components behave like independent classical random variables. We
therefore propose the following criterion for classifying the states ofN spin-1

2s.
A given quantum state of a system ofN spin-1

2s is classical if the joint quasiprobability
for the eigenstates of the components of each spin in three mutually orthogonal directions,
one of which is the average direction of that spin, is classical in the symmetric ordering of
the operators. The given quantum state is non-classical if any of those m-spin(m 6 N) joint
quasiprobabilities is negative in that ordering.

It is straightforward to see that not only all the spin-1
2 pure states but also any mixed

spin-1
2 state is classical. Hence it follows that a spin state factorizable into single spin states

is also classical. Let us therefore examine the nature of entangled states of a system of
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N spin-1
2s. It can be verified that a positive JQP for the above-mentioned cases cannot be

obtained for any other choice of spin components.
First we examine the nature of pure states of a system of two spin-1

2s. Any such state
can be written, by Schmidt decomposition, in the form [14, 15]

|ψ, α〉 = cos(α)| + a1,−a2〉 + sin(α)| − a1,+a2〉 (22)

where | ± ai〉 are the eigenstates of the componentŜ(i)
ai

of the ith spin in the direction
ai corresponding to the eigenvalues± 1

2. The parameterα is a measure of the degree of
correlation between the two states. Forα = 0 the state is a product state, i.e. the spins in that
state are uncorrelated whereas the maximal correlation is obtained forα = π/4. In order
to apply our criterion, we first introduce the spin operatorsŜ(i)

bi
, Ŝ(i)

ci
in the two orthogonal

directionsbi , ci which are orthogonal also toai . The spin components so constructed obey
the angular momentum commutation relations. Clearly the operatorsŜ(i)

± = Ŝ(i)

bi
± iŜ(i)

ci
are

the raising/lowering operators on the eigenstates|±ai〉 of Ŝ(i)
ai

. It is then straightforward to

see that〈Ŝ(i)

bi
〉 = 〈Ŝ(i)

ci
〉 = 0. Henceai is the average direction of theith spin. The criterion

for identifying the nature of the given state can therefore be applied by determining the
JQP for the eigenstates ofŜ(i)

ai
, Ŝ(i)

bi
, Ŝ(i)

ci
. The expression (8) for the JQP in that case can

be shown to be given by

p
q

2({ε(i)ai
, ε

(i)

bi
, ε(i)ci

}m) = 1

26
[1 + cos(2α)(ε(1)a1

− ε(2)a2
)− ε(1)a1

ε(2)a2

+ sin(2α)(ε(1)b1
ε
(2)
b2

+ ε(1)c1
ε(2)c2

)]. (23)

If ε(1)a1
= ε(2)a2

= ε then

p
q

2(ε, ε
(1)
b1
, ε(1)c1

; ε, ε(2)b2
, ε(2)c2

) = 1

26
sin(2α)[ε(1)b1

ε
(2)
b2

+ ε(1)c1
ε(2)c2

]. (24)

The JQP (24) can clearly become negative ifα 6= 0, i.e. if the states are entangled. Ifα = 0,
i.e. when the states are uncorrelated, then the JQP factorizes and is classical. Thus it follows
that any pure entangled state of two spin-1

2s is non-classical. This is in agreement with the
results of [14, 15] where the non-classicality of a pure entangled state of two spin-1

2s is
established by showing that those states violate Bell’s inequality. Note that a state which is
non-classical in the sense of the criterion introduced here need not violate Bell’s inequality.
Bell’s inequality is a sufficient but not a necessary condition for a state to be non-classical.

As for the mixed entangled state of two spin-1
2s, it has been shown in [16] that a state

of two spin-12s which is a sum of its factorizable states obeys Bell’s inequality. However,
as has already been mentioned, a state obeying Bell’s inequality need not be classical in
the sense of our criterion.

We now examine the nature of the states of a system ofN spin-1
2s forN > 2. We restrict

our attention to a collective system ofN spin-1
2s having total spinS = N/2. Such a system

is symmetric under the exchange of spins. Consider first the eigenstates of a collective spin
componentŜa = ∑

i Ŝ
(i)
a denoted by|m,a〉 wherem = −N/2,−N/2 + 1, . . . , N/2. Now

the states| ± N/2,a〉 are the spin coherent states which have already been shown to be
classical. We will show that the states|m 6= ±N/2,a〉 are non-classical. Since the average
direction of all the spins in those states isa we establish their non-classicality in accordance
with the proposed criterion by showing that the JQP for the eigenstates of the components
of two spins, say, spinsi andj along mutually orthogonal directionsa, b, c, i.e.

p
q

2(ε
(i)
a , ε

(i)

b , ε
(i)
c ; ε(j)a , ε

(j)

b , ε(j)c ) = 1

24
〈[ 1

2 + ε(i)a Ŝ
(i)
a + ε

(i)

b Ŝ
(i)

b + ε(i)c Ŝ
(i)
c )]

×[ 1
2 + ε(j)a Ŝ(j)a + ε

(j)

b Ŝ
(j)

b + ε(j)c Ŝ(j)c )]〉 (25)
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is non-classical. Note that the state|m 6= ±N/2,a〉 does not factorize into the single atom
states which implies that the spins in that state are correlated. For the evaluation of two-spin
JQP (25) we need to know the expectation values of the products of the operators for two
spins in the collective spin state|m,a〉. Those expectation values can be determined by
invoking the fact that the state|m,a〉 is symmetric under the exchange of spins so that

〈Ŝ(i)µ Ŝ(j)ν 〉 = 1

N(N − 1)

[
〈ŜµŜν〉 −

N∑
i=1

〈Ŝ(i)µ Ŝ(i)ν 〉
]
. (26)

Since the product of two single spin operators is expressible in terms of a single spin
operator, the operators on the right-hand side of (26) are collective operators whose
expectation values can be evaluated in the collective atomic states. Evaluating now the
averages in (25) using (26) we get

p
q

2(ε
(i)
a , ε

(i)

b , ε
(i)
c ; ε(j)a , ε

(j)

b , ε(j)c ) = 1

64

[
1 + 2m

N
(ε(i)a + ε(j)a )

+ 2

N(N − 1)

{
(ε
(i)

b ε
(j)

b + ε(i)c ε
(j)
c )

(
N2

4
−m2

)
+ 2ε(i)a ε

(j)
a

(
m2 − N

4

) }]
.

(27)

If m > 0 then letε(i)a = ε
(j)
a = ε

(i)

b ε
(j)

b = ε(i)c ε
(j)
c = −1 so that

p
q

2(−1, ε2, ε3; −1,−ε2,−ε3) = − 1
32(2m+ 1)(N − 2m). (28)

Sincem is always less than or equal toN/2 and is assumed to be positive semidefinite it
follows that the JQP (28) is negative. Similarly the JQP form 6 0 becomes negative if
ε(i)a = ε

(j)
a = 1 with other ε’s chosen in the same way as form > 0. Hence the states

|m 6= ±N/2,a〉 are non-classical.
We have thus proved that a symmetric entangled state of a system ofN spin-1

2s is
non-classical if it is an eigenstate of a linear Hermitian spin operator. An entangled state,
however, need not be an eigenstate of a linear Hermitian spin operator. For example,
the entangled minimum uncertainty states of spins [17] are eigenstates of the linear non-
Hermitian spin operator cosh(θ)Sx+i sinh(θ)Sy . Now we examine the nature of a symmetric
entangled state of spins which is not necessarily an eigenstate of a Hermitian spin operator.
Since the system is symmetric, the average direction of all the spins is the same. Leta
be the average direction of the spins and letŜ(i)

a be the component of theith spin in that
direction. Letb, c be the directions orthogonal to each other and toa and letŜ(i)

b , Ŝ
(i)
c be

the corresponding spin components. Since the spin vector is given by

Ŝ = Ŝaa + Ŝbb + Ŝcc (29)

and we have takena to be in the direction of〈Ŝ〉 it follows that

〈Ŝb〉 = 〈Ŝc〉 = 0. (30)

Consider now the JQP for two spins given by (8) form = 2 corresponding toε(1)a = −ε(2)a ,
ε
(1)
b = −ε(2)b , ε(1)c = −ε(2)c . By using (26), (30) and the fact that the eigenvalue of the total

spin operator

Ŝ2 = Ŝ2
a + Ŝ2

b + Ŝ2
c (31)

is N(N + 2)/4 it follows that

p
q

2(ε
(i)
a , ε

(i)

b , ε
(i)
c ; −ε(i)a ,−ε(i)b , ε

(i)
c )

= −1

32N(N − 1)
[ε(i)b ε

(i)
c {〈ŜbŜc〉 − 〈Sa〉} + ε(i)a ε

(i)

b 〈ŜaŜb〉 + ε(i)a ε
(i)
c 〈ŜaŜc〉]. (32)
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It is clear that depending upon the relative magnitudes of the averages appearing on the
right-hand side of (32) there always existε’s which makepq2 negative. The only case for
which it is non-negative is when all the averages in (32) vanish. Those averages vanish, of
course, for a factorizable state. In that case the probabilities even for other values ofε’s
turn out to be positive; as they should. The averages in (32) are non-zero for squeezed spin
states [17]. The squeezed spin states are, therefore, non-classical.

In conclusion, we have found a positive joint quasiprobability for any uncorrelated state
of a system ofN spin-1

2s. That JQP is shown to be negative for any entangled state of a
system of two spin-12s. The nature of the states of a system ofN spins symmetric under
the exchange of spins has been examined. The entangled states of such a system which are
eigenstates of a Hermitian linear spin operator have been shown to be non-classical. The
condition for an entangled state which is not an eigenstate of a linear Hermitian operator to be
classical has been obtained. In particular, the squeezed spin states, which are not eigenstates
of a linear Hermitian operator, turn out to be non-classical. The classification of the spin
states based on the criterion introduced here is similar to that for the canonical system.

Finally it should be emphasized that the criterion for the classification of the spin states,
like the one based on theP -function for canonical operators, only identifies non-classical
states. The problem of finding the experimentally observable quantities which carrry the
signature of non-classicality is an altogether different issue.
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